A DC-Link Hybrid Active Discharge Scheme for Traction Inverters
This paper examines the limitations of traditional discharge techniques and proposes a novel hybrid discharge solution that combines the existing winding-based discharge method with a
Abstract: when an Electrical Vehicle (EV) encounters an accident or the vehicle is taken to a service station, the DC-link capacitor in the inverter must be discharged to ensure safety of both the passengers and the operator.
When discharging the DC link using constant power, intelligent control electronics apply a sequence of constant power pulses to the resistor at a high frequency, typically referred to as PWM. As a result, the discharge energy is distributed evenly over the entire discharge process of the DC link.
To provide operational safety, the DC-Link capacitor must be discharged in two distinct operational scenarios: normal operation, such as after turning off the vehicle, and emergency situations, like post-vehicle collision or dangerous fault scenarios during maintenance.
Discharge resistors are used to discharge DC links. They discharge the electricity after an electric vehicle has been switched off and convert the energy into heat. This allows the DC link to be discharged reliably. The requirements and various methods for how best to carry out the discharging process are explained below.
PDF version includes complete article with source references.
Get technical specifications, European subsidy information, and ROI analysis tools for peak shaving and container energy storage solutions.
ul. Technologii 15, Park Przemysłowy
geochojnice.pl, Poland
Office: +48 22 525 6683
Technical: +48 189 486 173
Monday - Friday: 8:00 AM - 6:00 PM CET